On Crossing Numbers of Complete Tripartite and Balanced Complete Multipartite Graphs

نویسندگان

  • Ellen Gethner
  • Leslie Hogben
  • Bernard Lidický
  • Florian Pfender
  • Amanda Ruiz
  • Michael Young
چکیده

The crossing number cr(G) of a graph G is the minimum number of crossings in a nondegenerate planar drawing of G. The rectilinear crossing number cr(G) of G is the minimum number of crossings in a rectilinear nondegenerate planar drawing (with edges as straight line segments) of G. Zarankiewicz proved in 1952 that cr(Kn1,n2) ≤ Z(n1, n2) := ⌊ n1 2 ⌋ ⌊ n1−1 2 ⌋ ⌊ n2 2 ⌋ ⌊ n2−1 2 ⌋ . We define an analogous bound for the complete tripartite graph Kn1,n2,n3 ,

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crossing numbers of complete tripartite and balanced complete multipartite graphs

The crossing number cr(G) of a graph G is the minimum number of crossings in a nondegenerate planar drawing of G. The rectilinear crossing number cr(G) of G is the minimum number of crossings in a rectilinear nondegenerate planar drawing (with edges as straight line segments) of G. Zarankiewicz proved in 1952 that cr(Kn1,n2) ≤ Z(n1, n2) := ⌊ n1 2 ⌋ ⌊ n1−1 2 ⌋ ⌊ n2 2 ⌋ ⌊ n2−1 2 ⌋ . We define an ...

متن کامل

On size multipartite Ramsey numbers for stars versus paths and cycles

Let Kl×t be a complete, balanced, multipartite graph consisting of l partite sets and t vertices in each partite set. For given two graphs G1 and G2, and integer j ≥ 2, the size multipartite Ramsey number mj(G1, G2) is the smallest integer t such that every factorization of the graph Kj×t := F1 ⊕ F2 satisfies the following condition: either F1 contains G1 or F2 contains G2. In 2007, Syafrizal e...

متن کامل

Ramsey numbers in complete balanced multipartite graphs. Part I: Set numbers

The notion of a graph theoretic Ramsey number is generalised by assuming that both the original graph whose edges are arbitrarily bi–coloured and the sought after monochromatic subgraphs are complete, balanced, multipartite graphs, instead of complete graphs as in the classical definition. We previously confined our attention to diagonal multipartite Ramsey numbers. In this paper the definition...

متن کامل

Ramsey numbers in complete balanced multipartite graphs. Part II: Size numbers

The notion of a graph theoretic Ramsey number is generalised by assuming that both the original graph whose edges are arbitrarily bi–coloured and the sought after monochromatic subgraphs are complete, balanced, multipartite graphs, instead of complete graphs as in the classical definition. We previously confined our attention to diagonal multipartite Ramsey numbers. In this paper the definition...

متن کامل

META-HEURISTIC ALGORITHMS FOR MINIMIZING THE NUMBER OF CROSSING OF COMPLETE GRAPHS AND COMPLETE BIPARTITE GRAPHS

The minimum crossing number problem is among the oldest and most fundamental problems arising in the area of automatic graph drawing. In this paper, eight population-based meta-heuristic algorithms are utilized to tackle the minimum crossing number problem for two special types of graphs, namely complete graphs and complete bipartite graphs. A 2-page book drawing representation is employed for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Graph Theory

دوره 84  شماره 

صفحات  -

تاریخ انتشار 2017